Maths Work Sheet

Class - X
Q01:\} Find the smallest number which when divided by 30,40 and 60 leaves the remainder 7 in each case.

Q02 :] The dimensions of a room are $6 \mathrm{~m} 75 \mathrm{~cm}, 4 \mathrm{~m} 50 \mathrm{~cm}$ and 2 m 25 cm . Find the length of the largest measuring rod which can measure the dimensions in exact number of times.

Q03: $\}$ The HCF of 2 numbers is 75 and their LCM is $\mathbf{1 5 0 0}$. If one of the numbers is 300 , find the other.
$Q 04:\}$ Prove that $\sqrt{6}+\sqrt{5}$ is irrational.
Q05:] Can 72 and 20 respectively be the LCM and HCF of two numbers. Write down the reason.

Q06:\} If a and b are two prime numbers, write their HCF and LCM.
Q07: $\}$ If p and q are two coprime numbers, write their HCF and LCM.
Q08: $\}$ Without actual division, state whether the decimal form of $\frac{539}{5^{3} x 2^{2} x 7^{2}}$ is terminating OR recurring.

Q09:\} Find the HCF and LCM of 350 and 400 and verify that HCFxLCM=Product of the numbers.
$Q 10:\}$ Simplify: $\frac{2 \sqrt{45}+3 \sqrt{20}+10 \sqrt{125}}{2 \sqrt{5}}$
Q11 :\} Write down 5 irrational numbers in radical form which are lying between 4 and 5.

Q12:\} Write down 2 rational numbers lying between $\sqrt{2}$ and $\sqrt{3}$.
Q13:] Complete the missing entries in the following factor tree.

Q14:\} Prove that $\sqrt{\mathrm{p}}+\sqrt{q}$ is irrational if p and q are prime numbers.
Q15:\} Find the largest number which divides 245 and 1205 leaving the remainder 5 in each case.

Q16:\} Find the largest number which divides 303, 455 and 757 leaving the remainder 3,5 and 7 respectively.

Q17 :\} Prove that $\sqrt{5}$ is irrational.
Q18:\} Prove that $6-2 \sqrt{5}$ is irrational.
Q19:\} Find the HCF and the LCM of the following by prime factorization.
a) $\mathbf{3 6 0}, \mathbf{7 5 6}$
b) $2 x^{4} y^{3} z, 32 x^{3} y^{4} p^{2}$

Q20:\} Find the HCF by Euclid's Division Algorithm.
a) 256,352
b) $450,500,625$

Q21:\} Explain why $7 \times 11 \times 13+13$ is a composite number.
Q22 :\} Show that any positive odd number is of the form $6 q+1,6 q+3$ or $6 q+5$, where \boldsymbol{q} is an integer.

Q23:] Show that the square of any positive integer is of the form $3 m$ or $3 m+1$, where m is an integer.

Q24 :\} Use Euclid's division lemma to show that the cube of any positive integer is of the form $9 m, 9 m+1,9 m+8$, where m is an integer.

Q25:\} There are 3 consecutive traffic lights which turn 'green' after every 36, 42 and 72 seconds. They all were at "green" at 9:00 AM. At what time will they all turn 'green" simultaneously?

